Rudi Mathematici

## $x^{4}-8.212 x^{3}+25.286 .894 x^{2}-34.603 .963 .748 x+17.756 \cdot 354.226 .585=0$



THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.
THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY TWO AND IF IT'S ODD MULTIPEY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUAUY YOUR FRIENDS WILL STOP CAUUNG TO SEE IF YOU WANT TO HANG OUT.


[^0]

## Rudi Mathematici

 January|  | 1 | S | (1894) Satyendranath BOSE (1878) Agner Krarup ERLANG (1912) Boris GNEDENKO (1803) Guglielmo LIBRI Carucci dalla Sommaja | RM132 |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | S | (1822) Rudolf Julius Emmanuel CLAUSIUS <br> (1938) Anatoly SAMOILENKO <br> (1905) Lev Genrichovich SHNIRELMAN |  |
| 1 | 3 | M | (1917) Yuri Alexeievich MITROPOLSKY |  |
|  | 4 | T | (1643) Isaac NEWTON | RM071 |
|  | 5 | W | (1871) Federigo ENRIQUES <br> (1871) Gino FANO <br> (1838) Marie Ennemond Camille JORDAN | RM084 |
|  | 6 | T | (1807) Jozeph Mitza PETZVAL (1841) Rudolf STURM |  |
|  | 7 | F | (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY |  |
|  | 8 | S | (1924) Paul Moritz COHN <br> (1888) Richard COURANT <br> (1942) Stephen William HAWKING |  |
|  | 9 | S | (1864) Vladimir Adreievich STEKLOV |  |
| 2 | 10 | M | (1905) Ruth MOUFANG (1875) Issai SCHUR |  |
|  | 111213 | TWT | (1545) Guidobaldo DEL MONTE <br> (1734) Achille Pierre Dionis DU SEJOUR <br> (1707) Vincenzo RICCATI | RM120 |
|  |  |  | (1906) Kurt August HIRSCH |  |
|  |  |  | (1876) Luther Pfahler EISENHART <br> (1876) Erhard SCHMIDT <br> (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN |  |
|  | 14 | $\begin{aligned} & \mathbf{F} \\ & \mathrm{S} \end{aligned}$ | (1902) Alfred TARSKI | RM096 |
|  |  |  | (1704) Johann CASTILLON <br> (1850) Sofia Vasilievna KOVALEVSKAJA <br> (1717) Mattew STEWART |  |
|  | 16 | S | (1801) Thomas KLAUSEN |  |
|  | 17 | M | (1858) Gabriel KOENIGS <br> (1847) Nikolay Egorovich ZUKOWSKY |  |
|  | 18 | T | (1856) Luigi BIANCHI (1880) Paul EHRENFEST |  |
|  | 19 | W | (1813) Rudolf Friedrich Alfred CLEBSCH <br> (1879) Guido FUBINI <br> (1908) Aleksandr Gennadievich KUROSH |  |
|  | 20 | T | (1775) André Marie AMPĖRE (1904) Renato CACCIOPPOLI (1895) Gabor SZEGÓ | RM072 |
|  | 21 | F | (1915) Yuri Vladimirovich LINNIK (1846) Pieter Hendrik SCHOUTE |  |
|  | 22 | S | (1592) Pierre GASSENDI (1908) Lev Davidovich LANDAU | RM063 |
|  | 23 | S | (1840) Ernst ABBE (1862) David HILBERT | RM060 |
|  | 24 | M | (1891) Abram Samoilovitch BESICOVITCH (1914) Vladimir Petrovich POTAPOV |  |
|  | 25 | T | (1627) Robert BOYLE <br> (1736) Joseph-Louis LAGRANGE <br> (1843) Karl Hermann Amandus SCHWARZ | RM048 |
|  | 26 | W | (1799) Benoît Paul Émile CLAPEYRON |  |
|  | 7 | T | (1832) Charles Lutwidge DODGSON | RM108 |
|  | 28 | F | (1892) Carlo Emilio BONFERRONI <br> (1701) Charles Marie de LA CONDAMINE |  |
|  | 29 | S | (1888) Sidney CHAPMAN (1817) William FERREL |  |
|  | 30 | S | (1619) Michelangelo RICCI |  |
|  | 31 | M | (1715) Giovanni Francesco FAGNANO dei Toschi (1896) Sofia Alexandrovna JANOWSKAJA <br> (1841) Samuel LOYD |  |

## Putnam 1996-A1

Find the least number $A$ such that for any two squares of combined area 1 , a rectangle of area $A$ exists such that the two squares can be packed in the rectangle (without interior overlap). You may assume that the sides of the squares are parallel to the sides of the rectangle.

## Math pickup lines

My love for you is a monotonically increasing unbounded function.

## MathJokes4MathyFolks

Ten percent of all car thieves are left-handed. All polar bears are left-handed.
If your car is stolen, there's a $10 \%$ chance it was taken by a polar bear.

The description of right lines and circles, upon which geometry is founded, belongs to mechanics. Geometry does not teach us to draw these lines, but requires them to be drawn.

Isaac NEWTON

Mathematics is a game played according to certain simple rules with meaningless marks on paper.
Physics is becoming too difficult for the physicists.

David HILBERT

What I tell you three times is true.
Charles Lutwidge DOGSON

If you are afraid of something, measure it, and you will realize it is a mere triple.

Renato CACCIOPPOLI

Probabilities must be regarded as analogous to the measurement of physical magnitudes: they can never be known exactly, but only within certain approximation.

Emile BOREL

God not only plays dice. He also sometimes throws the dice where they cannot be seen.

Stephen HAWKING

The proof of the Hilbert Basis Theorem is not mathematics: it is theology.

Camille JORDAN

A mathematician's reputation rests on the number of bad proofs he has given.

Abram BESICOVITCH


# Rudi Mathematici February 



## Putnam 1996-A2

Let $C_{1}$ and $C_{2}$ be circles whose centers are 10 units apart, and whose radii are 1 and 3 . Find, with proof, the locus of all points $M$ for which there exists points $X$ on $C_{1}$ and $Y$ on $C_{2}$ such that $M$ is the midpoint of the line segment $X Y$.

## Math pickup lines

You are the solution to my homogeneous system of linear equations.

## MathJokes4MathyFolks

Every second, 4,000 cans are opened around the world.
Every second, ten babies are conceived around the world.
Therefore, each time you open a can, you have a 1 in 400 chance of becoming pregnant.
Technical skill is mastery of complexity while creativity is mastery of simplicity.

Eric Christopher ZEEMAN

No Roman ever died in contemplation over a geometrical diagram.

Alfred North WHITEHEAD

Suppose a contradiction were to be found in the axioms of set theory. Do you seriously believe that a bridge would fall down?

Frank Plumpton RAMSEY

Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game.

Godfried HARDY

It would be better for the true physics if there were no mathematicians on earth

Daniel BERNOULLI

A mathematician will recognize Cauchy, Jacobi or Helmholtz after reading a few pages, just as a musician recognize, from the first few bars, Mozart, Beethoven or Schubert.

Ludwig BOLTZMANN

One of the principle objects of research in my department is to find the point of view from which the subject appears in the greatest simplicity.

Willard GIBBS


Rudi Mathematici

## March

|  | 1 | T | (1611) John PELL |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | W | (1836) Julius WEINGARTEN |  |
|  | 3 | T | (1845) Georg CANTOR <br> (1838) George William HILL | RM062 |
|  | 4 | F | (1822) Jules Antoine LISSAJOUS |  |
|  | 5 | S |  |  |
|  | 6 | S | (1866) Ettore BORTOLOTTI |  |
| 10 | 7 | M | (1824) Delfino CODAZZI (1792) William HERSCHEL |  |
|  | 8 | T | (1851) George CHRYSTAL |  |
|  | 9 | W | (1900) Howard Hathaway AIKEN (1818) Ferdinand JOACHIMSTHAL |  |
|  | 10 | T | (1864) William Fogg OSGOOD |  |
|  | 11 | F | (1811) Urbain Jean Joseph LE VERRIER (1853) Salvatore PINCHERLE |  |
|  | 12 | S | (1685) George BERKELEY <br> (1859) Ernesto CESARO <br> (1824) Gustav Robert KIRCHHOFF |  |
|  | 13 | S | (1957) Rudy D'ALEMBERT (1861) Jules Joseph DRACH |  |
| 11 | 14 | M | (1879) Albert EINSTEIN (1864) Jozef KURSCHAK | RM074 |
|  | 15 | T | (1868) Grace CHISOLM YOUNG (1860) Walter Frank Raphael WELDON |  |
|  | 16 | W | (1750) Caroline HERSCHEL <br> (1846) Magnus Gosta MITTAG-LEFFLER <br> (1789) Georg Simon OHM |  |
|  | 17 | T | (1876) Ernest Benjamin ESCLANGON (1897) Charles FOX |  |
|  | 18 | F | (1640) Philippe de LA HIRE (1690) Christian GOLDBACH (1796) Jacob STEINER | RM122 |
|  | 19 | S | (1862) Adolf KNESER (1910) Jacob WOLFOWITZ |  |
|  | 20 | S | (1884) Philip FRANCK <br> (1840) Franz MERTENS <br> (1938) Sergi Petrovich NOVIKOV |  |
| 12 | 21 | M | (1884) George David BIRKHOFF (1768) Jean Baptiste Joseph FOURIER |  |
|  | 22 | T | (1917) Irving KAPLANSKY |  |
|  | 23 | W | (1882) Emmy Amalie NOETHER (1897) John Lighton SYNGE <br> (1754) Georg Freiherr von VEGA | RM050 |
|  | 24 | T | (1948) Sun-Yung (Alice) CHANG <br> (1809) Joseph LIOUVILLE <br> (1966) Gigliola STAFFILANI | RM142 |
|  | 25 | F | (1538) Christopher CLAUSIUS |  |
|  | 26 | S | (1848) Konstantin ANDREEV (1913) Paul ERDŐ́S | RM110 |
|  | 27 | S | (1857) Karl PEARSON |  |
| 13 | 28 | M | (1749) Pierre-Simon de LAPLACE (1928) Alexander GROTHENDIECK | RM086 |
|  | 29 | T | (1896) Wilhelm ACKERMAN <br> (1825) Francesco FAA' DI BRUNO <br> (1873) Tullio LEVI-CIVITA | RM098 |
|  | 30 | W | (1892) Stefan BANACH | RM134 |
|  | 31 | T | (1596) René DESCARTES |  |

## Putnam 1996-A3

Suppose that each of 20 students has made a choice of anywhere from 0 to 6 courses from a total of 6 courses offered. Prove or disprove: there are 5 students and 2 courses such that all 5 have chosen both courses or all 5 have chosen neither course.

## Math pickup lines

What's your favourite linear transformation?

## MathJokes4MathyFolks

What is the volume of a disk with radius $z$ and height $a$ ? $p i \cdot z \cdot z \cdot a$.

Geometry is the noblest branch of physics. William Fogg OSGOOD

And what are these fluxions? The velocities of evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?

George BERKELEY

Common sense is nothing more than a deposit of prejudices laid down in the mind before you reach eighteen.

## Albert EINSTEIN

A Mathematician is a machine for turning coffee into theorems.

Paul ERDŐS

Perfect numbers (like perfect men) are very rare.

René DESCARTES

A mathematician is a person who can find analogies between theorems; $a$ better mathematician is one who can see analogies between proofs and the best mathematician can notice analogies between theories. One can imagine that the ultimate mathematician is one who can see analogies between analogies.

Stefan BANACH

$\begin{array}{|cc|ll|}\hline & \mathbf{1} & \mathbf{F} & \begin{array}{l}\text { (1895) Alexander Craig AITKEN } \\ \text { (1776) Marie-Sophie GERMAIN }\end{array} \\ & & & \begin{array}{l}\text { (1640) Georg MOHR }\end{array} \\$\cline { 4 - 5 } \& $\left.\mathbf{2} & \mathbf{S} & \text { (1934) Paul Joseph COHEN }\end{array}\right]$

Putnam 1996-A4
Let $S$ be the set of ordered triplets ( $a, b, c$ ) of distinct elements of a finite set $A$. Suppose that:

1. $(a, b, c) \in S \Leftrightarrow(b, c, a) \in S$;
2. $(a, b, c) \in S \Leftrightarrow(c, b, a) \notin S$;
3. $(a, b, c)$ e $(c, d, a) \in S \Leftrightarrow$

$$
(b, c, d) \text { е }(d, a, b) \in S
$$

Prove that exists a one-to-one function $g$ from $A$ to the set of real numbers such that $g(a)<g(b)<g(c) \Rightarrow(a, b, c) \in S$.

## Math pickup lines

I wish I were a derivative so I could lie tangent to your curves.

## MathJokes4MathyFolks

A math professor is a person who talks in someone else's sleep.

We could present spatially an atomic fact which contradicted the laws of physics, but not one which contradicted the laws of geometry.

Ludwig WITTGENSTEIN

Knowing what is big and what is small is more important than being able to solve partial differential equations.
Any good idea can be stated in fifty words or less.
The infinite we shall do right away. The finite may take a little longer.

Stanislaw Marcin ULAM

Mathematicians are born, not made.
Jules Henri POINCARÉ

If anybody says he can think about quantum problems without getting giddy, that only shows he has not understood the first thing about them.

Max Karl Ernst Ludwig PLANCK

This paper is so bad it is not even wrong.
Wolfgang PAULI

Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions.

Felix KLEIN


## Rudi Mathematici



Mathematics is very much like poetry. What makes a great poem is that there is a great amount of thought expressed in very few words. In this sense, formulas like $\mathrm{e}^{\mathrm{i} \pi}+1=0$ are poems.

Lipa BERS

This series is divergent, therefore we may be able to do something with it.

Oliver HEAVISIDE


\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} \& 1 \& \multirow[t]{5}{*}{W

T
F
S

S} \& | (1796) Sadi Leonard Nicolas CARNOT (1851) Edward Bailey ELLIOTT |
| :--- |
| (1899) Edward Charles TITCHMARSH | \& <br>

\hline \& \multirow[t]{3}{*}{1

2
3
4
5} \& \& (1895) Tibor RADÓ \& <br>
\hline \& \& \& (1659) David GREGORY \& <br>
\hline \& \& \& (1809) John Henry PRATT \& <br>

\hline \& 5 \& \& | (1819) John Couch ADAMS |
| :--- |
| (1814) Pierre Laurent WANTZEL | \& RM065 <br>


\hline \multirow[t]{7}{*}{23} \& 6 \& M \& | (1857) Aleksandr Michailovitch LYAPUNOV |
| :--- |
| (1436) Johann Muller REGIOMONTANUS |
| (1906) Max ZORN | \& RM077 <br>

\hline \& \multirow[t]{2}{*}{7

8} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\mathbf{T} \\
\mathbf{W}
\end{gathered}
$$} \& (1863) Edward Burr VAN VLECK \& <br>

\hline \& \& \& | (1625) Giovanni Domenico CASSINI |
| :--- |
| (1858) Charlotte Angas SCOTT |
| (1860) Alicia Boole STOTT | \& <br>

\hline \& \multirow[t]{2}{*}{9
10} \& \multirow[t]{2}{*}{T} \& (1885) John Edensor LITTLEWOOD \& RM049 <br>
\hline \& \& \& (940) Mohammad ABU'L WAFA Al-Buzjani (1887) Vladimir Ivanovich SMIRNOV \& RM101 <br>
\hline \& 11 \& S \& (1937) David Bryant MUMFORD \& <br>
\hline \& 12 \& S \& (1888) Zygmunt JANYSZEWSKI \& <br>

\hline \multirow[t]{7}{*}{24} \& 13 \& M \& | (1876) William Sealey GOSSET (Student) |
| :--- |
| (1831) James Clerk MAXWELL |
| (1928) John Forbes NASH | \& RM113 <br>


\hline \& 14 \& T \& | (1903) Alonzo CHURCH |
| :--- |
| (1736) Charles Augustin de COULOMB |
| (1856) Andrei Andreyevich MARKOV | \& RM125 <br>


\hline \& 15 \& W \& | (1894) Nikolai Gregorievich CHEBOTARYOV |
| :--- |
| (1640) Bernard LAMY | \& <br>

\hline \& \multirow[t]{2}{*}{16} \& T \& (1915) John Wilder TUKEY \& <br>
\hline \& \& F \& (1898) Maurits Cornelius ESCHER \& <br>

\hline \& \[
18

\] \& S \& | (1858) Andrew Russell FORSYTH |
| :--- |
| (1884) Charles Ernest WEATHERBURN | \& <br>

\hline \& 19 \& S \& (1902) Wallace John ECKERT (1623) Blaise PASCAL \& RM053 <br>

\hline \multirow[t]{7}{*}{25} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 20 \\
& 21
\end{aligned}
$$} \& \multirow[t]{2}{*}{M

$\mathbf{T}$} \& (1873) Alfred LOEWY \& <br>

\hline \& \& \& | (1828) Giuseppe BRUNO |
| :--- |
| (1781) Simeon Denis POISSON | \& <br>


\hline \& 22 \& W \& | (1864) Hermann MINKOWSKY |
| :--- |
| (1822) Mario PIERI |
| (1910) Konrad ZUSE | \& <br>

\hline \& \multirow[t]{2}{*}{23} \& T \& (1912) Alan Mathison TURING \& RM089 <br>
\hline \& \& F \& (1880) Oswald VEBLEN \& <br>
\hline \& 24 \& \multirow[t]{2}{*}{S} \& (1908) William Van Orman QUINE \& <br>

\hline \& \[
$$
\begin{aligned}
& 25 \\
& 26
\end{aligned}
$$

\] \& \& | (1918) Yudell Leo LUKE |
| :--- |
| (1823) William THOMSON, Lord Kelvin | \& <br>

\hline \multirow[t]{4}{*}{26} \& 27 \& M \& (1806) Augustus DE MORGAN \& <br>
\hline \& 28 \& T \& (1875) Henri Leon LEBESGUE \& <br>
\hline \& 29 \& W \& (1888) Aleksandr Aleksandrovich FRIEDMANN \& RM101 <br>
\hline \& 30 \& T \& (1791) Felix SAVART \& <br>
\hline
\end{tabular}

## Putnam 1996-A6

Let $c>0$ be a constant. Give a complete description, with proof, of the set of all continuous functions $f: R \rightarrow R$ such that $f(x)=f\left(x^{2}+c\right)$ for all $x \in R$.

## Math pickup lines

Come on baby, let's off to a decimal place I know of and I'll take you to the limit.

## MathJokes4MathyFolks

In the expression $x^{3}$, what do you call the 3 ? An exponent.
In the expression $y^{2}$, what do you call the 2 ? A y ponent.

Algebra goes to the heart of the matter as it ignores the casual nature of particular cases.

Edward Charles TITCHMARSH

Fourier is a mathematical poem.
William THOMSON, Lord Kelvin

Life is good for only two things, discovering mathematics and teaching mathematics.

> Siméon Denis POISSON

We are usually convinced more easily by reasons we have found ourselves than by those which have occurred to others.

Blaise PASCAL

The mathematical education of the young physicist [Albert Einstein] was not very solid, which I am in a good position to evaluate since he obtained it from me in Zurich some time ago.

Hermann MINKOWSKY

Ampère was the Newton of Electricity.
James Klerk MAXWELL

Before creation God did just pure mathematics. Then He thought it would be a pleasant change to do some applied.

John Edensor LITTLEWOOD


Rudi Mathematici
July

|  | 1 | F | (1788) Jean Victor PONCELET <br> (1643) Gottfried Wilhelm von LEIBNIZ | RM054 |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | S | (1852) William BURNSIDE <br> (1820) William John Racquorn RANKINE |  |
|  | 3 | S | (1807) Ernest Jean Philippe Fauque de JONQUIERE (1897) Jesse DOUGLAS |  |
| 27 | 4 | M | (1917) Michail Samoilovich LIVSIC (1906) Daniel Edwin RUTHERFORD |  |
|  | $\begin{array}{ll} 5 & T \\ 6 & W \\ 7 & T \end{array}$ |  | (1936) James MIRRLEES |  |
|  |  |  | (1849) Alfred Bray KEMPE |  |
|  |  |  | (1906) William FELLER <br> (1922) Vladimir Aleksandrovich MARCHENKO <br> (1816) Johann Rudolf WOLF |  |
|  | 8 | F | (1760) Christian KRAMP (1904) Henri Paul CARTAN | RM126 |
|  | $\begin{gathered} 9 \\ 10 \end{gathered}$ | $\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \end{aligned}$ | (1845) George Howard DARWIN | RM138 |
|  |  |  | (1862) Roger COTES <br> (1868) Oliver Dimon KELLOGG |  |
| 28 | 11 | M | (1890) Giacomo ALBANESE <br> (1857) Sir Joseph LARMOR <br> (1888) Jacob David TAMARKIN | RM101 |
|  | 12 | T | (1895) Richard BUCKMINSTER FULLER <br> (1875) Ernest Sigismund FISCHER | RM066 |
|  | 13 | W | (1527) John DEE <br> (1741) Karl Friedrich HINDENBURG |  |
|  | 14 | T | (1671) Jacques D'ALLONVILLE <br> (1793) George GREEN | RM078 |
|  | 15 | F | (1865) Wilhelm WIRTINGER <br> (1906) Adolph Andrej Pavlovich YUSHKEVICH |  |
|  | 16 | S | (1903) Irmgard FLUGGE-LOTZ <br> (1678) Jakob HERMANN |  |
|  | 17 | S | (1837) Wilhelm LEXIS <br> (1831) Victor Mayer Amedeè MANNHEIM |  |
| 29 | 18 | M | (1635) Robert HOOKE <br> (1853) Hendrik Antoon LORENTZ <br> (1013) Hermann von REICHENAU | RM114 |
|  | $\begin{aligned} & 19 \\ & 20 \end{aligned}$ | $\begin{gathered} \mathbf{T} \\ \mathbf{W} \end{gathered}$ | (1768) Francois Joseph SERVOIS |  |
|  |  |  | (1947) Gerd BINNIG <br> (1876) Otto BLUMENTHAL |  |
|  | 21 | T | (1620) Jean PICARD <br> (1848) Emil WEYR <br> (1849) Robert Simpson WOODWARD |  |
|  | $\begin{aligned} & 22 \\ & 23 \end{aligned}$ | $\begin{gathered} \mathbf{F} \\ \mathbf{S} \end{gathered}$ | (1784) Friedrich Wilhelm BESSEL |  |
|  |  |  | (1775) Etienne Louis MALUS (1854) Ivan SLEZYNSKY |  |
|  | 24 | S | (1871) Paul EPSTEIN <br> (1923) Christine Mary HAMILL <br> (1851) Friedrich Herman SCHOTTKY |  |
| 30 | 25 M <br> 26 T <br> 27 W |  | (1808) Johann Benedict LISTING |  |
|  |  |  | (1903) Kurt MAHLER |  |
|  |  |  | (1801) George Biddel AIRY <br> (1667) Johann BERNOULLI <br> (1848) Lorand Baron von EÖTVÖS <br> (1871) Ernst Friedrich Ferdinand ZERMELO | RM093 <br> RM090 |
|  | 28 T <br> 29 F <br> 30 S <br> 31 S |  | (1954) Gerd FALTINGS |  |
|  |  |  | (1898) Isidor Isaac RABI |  |
|  |  |  | (1889) Vladimir Kosma ZWORKYN |  |
|  |  |  | (1704) Gabriel CRAMER <br> (1712) Johann Samuel KOENIG |  |

## Putnam 1996-B1

Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

## Math pickup lines

Let's take each other to the limit to see if we converge.

## MathJokes4MathyFolks

Teacher: What is $14+14$ ?
Student: 28.
Teacher: That's good!
Student: Good? It's perfect!
[The infinitesimals] neither have nor can have theory; in practise it is a dangerous instrument in the hands of beginners. Anticipating, for my part, the judgement of posterity, I would predict that this method will be accused one day, and rightly, of having retarded the progress of the mathematical sciences.

Francois Joseph SERVOIS

When working on a problem, I never think about beauty; I think only of how to solve the problem. But when I have finished, if the solution is not beautiful, I know that it is wrong.

Richard Buckminster FULLER

Miracles are not to be multiplied beyond necessity.
Taking mathematics from the beginning of the word to the time of Newton, what he has done is much the better half.

Gottfried LEIBNITZ

All possible definitions of probability fall short of the actual practice.

William FELLER

A quantity that is increased or decreased of an infinitely small quantity is neither increased nor decreased

Johann BERNOULLI


Rudi Mathematici August

| 31 | 1 | M | (1861) Ivar Otto BENDIXSON (1881) Otto TOEPLITZ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | T | (1902) Mina Spiegel REES <br> (1856) Ferdinand RUDIO |  |
|  | 3 | W | (1914) Mark KAC | RM115 |
|  | 4 | T | (1805) Sir William Rowan HAMILTON (1838) John VENN | RM079 |
|  | 5 | F | (1802) Niels Henrik ABEL | RM055 |
|  | 6 | S | (1638) Nicolas MALEBRANCHE <br> (1741) John WILSON |  |
|  | 7 | S | (1868) Ladislaus Josephowitsch BORTKIEWITZ |  |
| 32 | 8 | $\begin{gathered} \mathbf{M} \\ \mathbf{T} \\ \mathbf{W} \\ \mathbf{T} \end{gathered}$ | (1902) Paul Adrien Maurice DIRAC | RM103 |
|  | $\begin{gathered} 9 \\ 10 \\ 11 \end{gathered}$ |  | (1537) Francesco BAROZZI (Franciscus Barocius) |  |
|  |  |  | (1602) Gilles Personne de ROBERVAL |  |
|  |  |  | (1730) Charles BOSSUT <br> (1842) Enrico D'OVIDIO |  |
|  | 12 | F | (1882) Jules Antoine RICHARD (1887) Erwin Rudolf Josef Alexander SCHRÖDINGER | RM103 |
|  | 13 | S | (1625) Erasmus BARTHOLIN (1861) Cesare BURALI-FORTI (1819) George Gabriel STOKES |  |
|  | 14 | S | (1530) Giovanni Battista BENEDETTI <br> (1865) Guido CASTELNUOVO <br> (1842) Jean Gaston DARBOUX <br> (1866) Charles Gustave Nicolas de la VALLÉEPOUSSIN |  |
| 33 | 15 | M | (1892) Louis Pierre Victor duc de BROGLIE <br> (1863) Aleksei Nikolaevich KRYLOV <br> (1901) Piotr Sergeevich NOVIKOV |  |
|  | 16 | T | (1821) Arthur CAYLEY <br> (1773) Louis-Benjamin FRANCOEUR |  |
|  | 17 | W | (1601) Pierre de FERMAT | RM091 |
|  | 18 | T | (1685) Brook TAYLOR |  |
|  | 19 | F | (1646) John FLAMSTEED <br> (1739) Georg Simon KLUGEL |  |
|  | 20 | S | (1863) Corrado SEGRE (1882) Wacłav SIERPIŃSKI (1710) Thomas SIMPSON |  |
|  | 21 | S | (1789) Augustin Louis CAUCHY | RM127 |
| 34 | $\begin{aligned} & 22 \\ & 23 \end{aligned}$ | $\begin{gathered} \mathbf{M} \\ \mathbf{T} \end{gathered}$ | (1647) Denis PAPIN |  |
|  |  |  | (1829) Moritz Benedikt CANTOR <br> (1683) Giovanni POLENI <br> (1842) Osborne REYNOLDS |  |
|  | 24 | W | (1561) Bartholomeo PITISCUS <br> (1942) Karen Keskulla UHLENBECK |  |
|  | 25 | T | (1561) Philip van LANSBERGE (1844) Thomas MUIR |  |
|  | 26 | F | (1728) Johann Heinrich LAMBERT <br> (1875) Giuseppe VITALI |  |
|  | 27 | S | (1858) Giuseppe PEANO | RM067 |
|  | 28 | S | (1796) Irénée Jules BIENAYMÉ |  |
| 35 | 29 | $\begin{gathered} \mathbf{M} \\ \mathbf{T} \end{gathered}$ | (1904) Leonard ROTH |  |
|  |  |  | (1856) Carle David Tolmé RUNGE (1906) Olga TAUSSKY-TODD | RM139 |
|  | 31 | W | (1821) Hermann Ludwig Ferdinand von HELMHOLTZ |  |

Putnam 1996-B2
Show that for every positive integer $n$,

$$
\begin{aligned}
& \left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}} \\
& <1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1) \\
& <\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
\end{aligned}
$$

## Math pickup lines

If I were a function you would be my asymptote - I always tend towards you.

## MathJokes4MathyFolks

Q: How many mathematicians does it take to change a light bulb?
A: Just one. She gives it to three physicists, thus reducing it to a problem that has already been solved.
Thus, the task is, not so much to see what no one has yet seen; but to think what nobody has yet thought, about that which everybody sees.

Erwin Rudolf Joseph Alezander SCHRÖDINGER

This result is too beautiful to be false; it is more important to have beauty in one's equations than to have them fit experiment.

Paul Adrien Maurice DIRAC

And perhaps, posterity will thank me for having shown it that the ancients did not know everything.

Pierre de FERMAT

As for everything else, so for a mathematical theory: beauty can be perceived but not explained.

> Arthur CAYLEY

There are surely worse things than being wrong, and being dull and pedantic are surely among them.

Mark KAC

Whoever [in the pursuit of science] seeks after immediate practical utility may rest assured that he seeks in vain.

Hermann von HELMHOLTZ


## Rudi Mathematici

 September|  | 1 | T | (1835) William Stankey JEVONS (1659) Joseph SAURIN |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | F | (1878) Mauriche René FRECHET (1923) René THOM | RM080 |
|  | 3 | S | (1884) Solomon LEFSCHETZ (1908) Lev Semenovich PONTRYAGIN (1814) James Joseph SYLVESTER | RM104 |
|  | 4 | S | (1809) Luigi Federico MENABREA | RM059 |
| 36 | 5 | M | (1725) Jean Etienne MONTUCLA (1667) Giovanni Girolamo SACCHERI | RM128 |
|  | 6 | T | (1859) Boris Jakovlevich BUKREEV (1863) Dimitri Aleksandrovich GRAVE |  |
|  | 7 | W | (1707) George Louis Leclerc comte de BUFFON (1955) Efim ZELMANOV |  |
|  | 8 | T | (1588) Marin MERSENNE <br> (1584) Gregorius SAINT-VINCENT | RM092 |
|  | 9 | F | (1860) Frank MORLEY |  |
|  | 10 | S | (1839) Charles Sanders PEIRCE | RM123 |
|  | 11 | S | (1623) Stefano degli ANGELI <br> (1877) sir James Hopwood JEANS |  |
| 37 | 12 | M | (1900) Haskell Brooks CURRY (1891) Antoine André Louis REYNAUD |  |
|  | 13 | T | (1885) Wilhelm Johann Eugen BLASCHKE (1873) Constantin CARATHÉODORY |  |
|  | 14 | W | (1858) Henry Burchard FINE <br> (1891) Ivan Matveevich VINOGRADOV |  |
|  | 15 | T | (973) Abu Arrayhan Muhammad ibn Ahmad AL'BIRUNI <br> (1886) Paul Pierre LEVY |  |
|  | 16 | F | (1494) Francisco MAUROLICO (1736) Johann Nikolaus TETENS |  |
|  | 17 | S | (1743) Marie Jean Antoine Nicolas de Caritat de CONDORCET <br> (1826) Georg Friedrich Bernhard RIEMANN | RM068 |
|  | 18 | S | (1752) Adrien Marie LEGENDRE | RM140 |
| 38 | 19 | M | (1749) Jean Baptiste DELAMBRE |  |
|  | 20 | T | (1861) Frank Nelson COLE (1842) Alexander Wilhelm von BRILL |  |
|  | 21 | W | (1899) Juliusz Pawel SCHAUDER |  |
|  | 22 | T | (1769) Louis PUISSANT <br> (1765) Paolo RUFFINI <br> (1803) Jaques Charles Francois STURM | RM116 |
|  | 23 | F | (1900) David van DANTZIG (1768) William WALLACE |  |
|  | 24 | S | (1501) Girolamo CARDANO <br> (1625) Johan DE WITT <br> (1801) Michail Vasilevich OSTROGRADSKI | $\begin{aligned} & \text { RM064 } \\ & \text { RM056 } \end{aligned}$ |
|  | 25 | S | (1888) Stefan MAZURKIEWICZ (1819) George SALMON |  |
| 39 | 26 | M | (1688) Willem Jakob 's GRAVESANDE <br> (1854) Percy Alexander MACMAHON <br> (1891) Hans REICHENBACH |  |
|  | 27 | T | (1855) Paul Émile APPELL (1876) Earle Raymond HEDRICK (1919) James Hardy WILKINSON |  |
|  | 28 | W | (1873) Julian Lowell COOLIDGE <br> (1761) Ferdinand Francois Desirè Budan de BOISLAURENT <br> (1698) Pierre Louis Moreau de MAUPERTUIS |  |
|  | 29 | T | (1812) Adolph GOPEL <br> (1561) Adriaan van ROOMEN |  |
|  | 30 | F | (1775) Robert ADRAIN <br> (1883) Ernst HELLINGER <br> (1829) Joseph WOLSTENHOLME |  |

## Putnam 1996-B3

Given that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\{1,2, \ldots, n\}$, find, with proof, the largest possible value, as function of $n$ (with $n \geq 2$ ) of

$$
x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n-1} x_{n}+x_{n} x_{1}
$$

## Math pickup lines

Your beauty cannot be spanned by a finite basis of vectors.

## MathJokes4MathyFolks

Father: Did you learn a lot in math class today?
Son: Apparently not! They want me to come back again tomorrow!
I believe that proving is not a natural activity for mathematicians.

René THOM

The early study of Euclid made me a hater of geometry.

> James Joseph SYLVESTER

If error is corrected whenever it is recognised, the path of error is the path of truth.

Hans REICHENBACH

If it's just turning the crank it's algebra, but if it's got an idea in it, it's topology.

## Solomon LEFSCHETZ

This branch of mathematics [Probability] is the only one, I believe, in which good writers frequently get results which are entirely erroneous.

Charles Sanders PEIRCE

We may as well cut out the group theory. That is a subject that will never be of any use in physics.

> sir James Hopwood JEANS
[Upon proving that the best betting strategy for "Gambler's Ruin" was to bet all on the first trial.]
It is true that a man who does this is a fool. I have only proved that a man who does anything else is an even bigger fool.

Julian Lowell COOLIDGE

If only I had the theorems! Then I should find the proofs easily enough...

Bernhard RIEMANN



## Putnam 1996-B4

For any square matrix $A$, we can define $\sin A$ by the usual power series:

$$
\sin A=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} A^{2 n+1}
$$

Prove or disprove: there exists a 2 x 2 matrix $A$ with real entries such that

$$
\sin A=\left(\begin{array}{cc}
1 & 1996 \\
0 & 1
\end{array}\right)
$$

## Math pickup lines

My love for you is like a fractal - it goes on forever.

## MathJokes4MathyFolks

What's the difference between a math PhD and a large pizza? A large pizza can feed a family of four.

Much as I venerate the name of Newton, I am not obliged to believe that he was infallible. I see ... with regret that he was liable to err, and that his authority has, perhaps, sometimes even retarded the progress of science.

William Henry YOUNG

It is true that a mathematician who is not also something of a poet will never be a perfect mathematician.

Karl Theodor Wilhem WEIERSTRASS

An expert is a man who has made all the mistakes which can be made in a very narrow field.
Anyone who is not shocked by quantum theory has not understood it.
Prediction is very difficult, especially about the future.
How wonderful that we have met with a paradox. Now we have some hope of making progress.

Niels BOHR
$2^{30}\left(2^{31}-1\right)$ is the greatest perfect number that will ever be discovered, for, as they are merely curious without being useful, it is not likely that any person will attempt to find a number beyond it.

Peter BARLOW

Unfortunately what is little recognized is that the most worthwhile scientific books are those in which the author clearly indicates what he does not know; for an author most hurts his readers by concealing difficulties.

Evariste GALOIS


Rudi Mathematici

## November

|  | 1 | T | (1535) Giambattista DELLA PORTA |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | W | (1815) George BOOLE | RM094 |
|  | 3 | T | (1878) Arthur Byron COBLE (1867) Martin Wilhelm KUTTA |  |
|  | 4 | F | (1744) Johann (III) BERNOULLI (1865) Pierre Simon GIRARD | RM093 |
|  | 5 | S | (1930) John Frank ADAMS <br> (1848) James Whitbread Lee GLAISHER |  |
|  | 6 | S | (1781) Giovanni Antonio Amedeo PLANA |  |
| 45 | 7 | M | (1660) Thomas Fantet DE LAGNY <br> (1799) Karl Heinrich GRAFFE <br> (1898) Raphael SALEM |  |
|  | 8 | T | (1846) Eugenio BERTINI <br> (1848) Fredrich Ludwig Gottlob FREGE <br> (1656) Edmond HALLEY <br> (1869) Felix HAUSDORFF |  |
|  | 9 | W | (1847) Carlo Alberto CASTIGLIANO <br> (1885) Theodor Franz Eduard KALUZA <br> (1922) Imre LAKATOS <br> (1885) Hermann Klaus Hugo WEYL | RM082 |
|  | 10 | T | (1829) Helwin Bruno CHRISTOFFEL |  |
|  | 11 | F | (1904) John Henry Constantine WHITEHEAD |  |
|  | 12 | S | (1842) John William STRUTT Lord RAYLEIGH (1927) Yutaka TANIYAMA <br> (1825) Michail Egorovich VASHCHENKO- <br> ZAKHARCHENKO |  |
|  | 13 | S | (1878) Max Wilhelm DEHN <br> (1876) Ernest Julius WILKZYNSKY |  |
| 46 | 14 | M | (1845) Ulisse DINI |  |
|  | 15 | T | (1688) Louis Bertrand CASTEL <br> (1793) Michel CHASLES <br> (1794) Franz Adolph TAURINUS |  |
|  | 16 | W | (1835) Eugenio BELTRAMI |  |
|  | 17 | T | (1717) Jean Le Rond D'ALEMBERT <br> (1597) Henry GELLIBRAND <br> (1790) August Ferdinand MÖBIUS | RM118 |
|  | 18 | F | (1927) Jon Leslie BRITTON <br> (1872) Giovanni Enrico Eugenio VACCA |  |
|  | 19 | S | (1901) Nina Karlovna BARI <br> (1894) Heinz HOPF <br> (1900) Michail Alekseevich LAVRENTEV |  |
|  | 20 | S | (1889) Edwin Powell HUBBLE (1924) Benoît MANDELBROT |  |
| 47 | 21 | M | (1867) Dimitri SINTSOV |  |
|  | 22 | T | (1803) Giusto BELLAVITIS <br> (1840) Émile Michel Hyacinthe LEMOINE |  |
|  | 23 | W | (1820) Issac TODHUNTER <br> (1616) John WALLIS <br> (1917) Elizabeth Leonard SCOTT | RM070 <br> RM106 |
|  | 24 | T | (1909) Gerhard GENTZEN <br> (1549) Duncan MacLaren Young SOMMERVILLE |  |
|  | 25 | F | (1873) Claude Louis MATHIEU <br> (1841) Fredrich Wilhelm Karl Ernst SCHRÖDER |  |
|  | 26 | S | (1946) Enrico BOMBIERI (1894) Norbert WIENER |  |
|  | 27 | S | (1867) Arthur Lee DIXON |  |
| 48 | 28 | M | (1898) John WISHART |  |
|  | 29 | T | (1803) Christian Andreas DOPPLER (1879) Nikolay Mitrofanovich KRYLOV (1849) Horace LAMB |  |
|  | 30 | W | (1549) Sir Henry SAVILE <br> (1969) Matilde MARCOLLI | RM142 |

## Putnam 1996-B5 <br> Given a finite string $S$ of symbols $X$ and $O$, we write $\Delta(S)$ for the number of $X \mathrm{~s}$ in $S$ minus the number of $O$ 's. For example, $\Delta(X O O X O O X)=-1$. We call a string balanced if every substring $T$ of (consecutive symbols of) $S$ has $-2 \leq \Delta(T) \leq 2$. Thus, XOOXOOX is not balanced, since it contains the substring OOXOO. Find, with proof, the number of balanced strings of length $n$. <br> Math pickup lines <br> I hope you know set theory because I want to intersect and union you. <br> MathJokes4MathyFolks <br> Why was the math book sad? Because it had so many problems.

A professor is one who can speak on any subject - for precisely fifty minutes.

## Norbert WIENER

The British Mathematical Colloquium consists of three days of mathematics with no dogs and no wives.

John Henry Constantine WHITEHEAD

A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details.

Hermann Klaus Hugo WEYL

Being a language, mathematics may be used not only to inform but also, among other things, to seduce.
The modern physicist is a quantum theorist on Monday, Wednesday, and Friday and a student of gravitational relativity theory on Tuesday, Thursday, and Saturday. On Sunday he is neither, but is praying to his God that someone, preferably himself, will find the reconciliation between the two views.

Benoit MANDELBROT

Algebra is generous: she often gives more than is asked for.

Jean D'ALEMBERT
The history of astronomy is a history of receding horizons.

Edwin HUBBLE


## Rudi Mathematici

## December



## Putnam 1996-B6

Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ be the vertices of a convex polygon which contains the origin in its interior. Prove that there exist positive real numbers $x$ and $y$ such that

$$
\begin{aligned}
& \left(a_{1} b_{1}\right) x^{a_{1}} y^{b_{1}}+\left(a_{2} b_{2}\right) x^{a_{2}} y^{b_{2}}+\ldots \\
& +\left(a_{n} b_{n}\right) x^{a_{n}} y^{b_{n}}=(0,0)
\end{aligned}
$$

## Math pickup lines

You've got more curves than a triple integral.

## MathJokes4MathyFolks

What's Santa Claus multiplied by $i$ ?
Well, I guess that makes him real.
In mathematics you don't understand things. You just get used to them.

John VON NEUMANN

In order to translate a sentence from English into French two things are necessary. First, we must understand thoroughly the English sentence. Second, we must be familiar with the forms of expression peculiar to the French language. The situation is very similar when we attempt to express in mathematical symbols a condition proposed in words. First, we must understand thoroughly the condition. Second, we must be familiar with the forms of mathematical expression.

George PÒLYA

There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.

Nikolay Yvanovich LOBACHEVSKY

The shortest path between two truths in the real domain passes through the complex domain.

Jaques Salomon HADAMARD

Mathematical discoveries, like springtime violets in the woods, have their season which no human can hasten or retard.

Janos BOLYAI

An expert is someone who knows some of the worst mistakes that can be made in his subject, and how to avoid them.

Werner Karl HEISENBERG


[^0]:    ©Thavea/Dist. by NEA, inc.

